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1. INTRODUCTION

Let M=[c,_;]1°;_, be an Hermitian Toeplitz matrix, i.e., ¢_,=¢;. We
will denote by M, the principal submatrix of size n+ 1. We will assume

A,=det M, #0 for every n=0, 1, 2, ....
It is well known [4] that the sequence of monic polynomials (®,)%
given by

n=

Co c c,
cp Co o Chn
¢”(Z)=An1_1 ) ) ,  n=12,.,
Cho1 Cn_2 €1
1 z z"
Dy(z)=1
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is a sequence of monic orthogonal polynomials with respect to the inner
product in P, the linear space of polynomials with complex coefficients,

ro=(214(3)). 1)

Here & is the linear functional defined on the linear space of Laurent
polynomials L in the following way

(&, 2" =cp, n=0,1,2, ..,
(L, z7"> =¢,, n=0,1,2,...

Notice that L =span{z"}___ and Pc L.
If 4,>0, n=0,1, .., the linear functional ¥ is said to be a positive
definite linear functional. In such a case, there exists a finite positive Borel

measure u supported on [ —n, 7), such that

Lopy=[" pte”) dulo)

Taking into account (1) it is straightforward to deduce that the shift
operator is isometric with respect to (1), i.e.,

(zp,zq)=(p.q),  p.q€P.

As a consequence of this fact, we can deduce two equivalent ways to
generate the sequence of monic orthogonal polynomials (SMOP) (&,).
They were obtained by Szegdé [10] in the positive definite case and by
Geronimus [4] in the general situation stated above:

Forward recurrence relation,

D, (z2)=zD,_1(z) + D,(0) DF_,(z), n=1,2,..

2

Dy(z) =1, 2
Backward recurrence relation,

D,(2)=(1—|D,0)) z®,_(2) + P,(0) D}(z), n=12,.. 3)

Do(z) =1,

where

D(z)=z"P,(1/)2)
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is the so-called reversed polynomial of @,,. The values @,(0) are called the
reflection (or Schur) parameters for the linear functional #. A straight-
forward computation yields

We will denote k2= (D, @,)=4,/4,_,=¢,.

Thus, in the positive definite case |@,(0)| <1 while in the general case
considered in this section, |®,(0)] # 1.

Conversely, given a sequence of complex numbers (a,,)>°_, with |a, | #1,
n=1,2, .., and a,=1, there exists a linear functional .# such that (a,):>_,
is the sequence of reflection parameters for the functional, or, equivalently,
a,=®,(0) where (®,) is the corresponding sequence of monic orthogonal
polynomials with respect to . This result is an analog of Favard’s
theorem. (See [3] for the positive definite case and [4, Theorem 4.1] for
the general case.)

According to this last result, there exists a linear functional .Z, or equiv-
alently, a sequence of monic orthogonal polynomials (£2,) associated with
2, such that Q,(0)= —a,, n=1,2, ...

(L2,) is called the SMOP of the second kind associated with Z.

These polynomials can be explicitly given by

22)=-— (2.2 10, - 0,00,

s
Co y—z

where .Z acts on the variable y in the right hand side polynomial in two
variables.
Finally, we can associate with the linear functional ¥ a formal series

F(z):=co+2 i CnZ". (4)

In the positive definite case, F'is an analytic function in the unit disk and
Re F(z) > 0. In the literature, F is said to be a Carathéodory function or
C-function. (See [7].) The connection with Schur functions and the Schur
algorithm is analyzed in [1].

The link between the formal series F' and the sequences (@,,) and (£2,,) is
the following
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THEOREM | [8]. The sequence of monic orthogonal polynomials (®,),
the corresponding polynomials of the second kind (£2,), and the Carathéodory
function F, satisfy the relation

D,(z) F(z) + 2,(2) = O(z"),
®X(z) F(z) = Q¥(z) = O(z" 1)

for z— 0.

In comparison with the real case (see [2]), very few explicit examples of
SMOP with respect to a linear functional are known in the literature.

A way to generate a new SMOP from a given SMOP (@,,) is to consider
a sieving process. Unfortunately, there is a strong constraint. For instance
—and this is a basic difference with the real case—there exists a unique
SMOP (¥%,) such that ¥,,, (z) =z®,(z?). Furthermore, ¥,,(z) = ®,(z?).
See [5, 6].

In terms of the reflection parameters, this means that the linear trans-
form T in the space of the sequences of reflection parameters is given by

T(aZn) =d,, n= O, 1, 2,
T(az, 1) =0, n=0,1,2,..

with @,(0)=a,,.
For the corresponding formal series,

holds.

The aim of our contribution is the analysis of necessary and sufficient
conditions in order that a sequence of polynomials (¥,) defined as a per-
turbation of (¥,) in the following way

ijZn(Z) = gDn(zz) + Zanl(Zz)

_ (5)
Do r(2) =20,(2%) + D, (=)

with n=0,1,..,B_; =0, and deg B,_, <n—1, deg D, <n, be an SMOP.
Next we deduce the expression of the formal series F in terms of the formal
series F' corresponding to the linear functional . and the relation between
the corresponding Szegd functions. The particular situation when & is a
positive definite functional will be considered. Finally we illustrate the
preceding with some examples: the case of real Schur parameters and
Bernstein—Szegd polynomials.
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Our results are a continuation of work started in [ 6], which is the unit
circle analog of a problem raised and solved in the real case by T. S. Chihara
and L. Chihara [2].

2. CONDITIONS FOR ORTHOGONALITY

_THEOREM 2. Suppose that an SMOP (®,)) is given. Then the sequence
(¥,), defined by (5) is an SMOP if and only if D,(0)#0 for at most one
ne {0, 1,2, ..}, and the polynomials (B,) and (D,) satisfy:

(a) if D,(0)=0 for all n=0,1,2,..., then B,(z)=D,(z)=0 for all
n=0,1, ..
(b) if DN(0)#0, then B,(z)=D,(z)=0 forn=0,1, ..., N—1,

Dy(2)=Dy(0) D%(2),  By(z) =Dyl2) + @y, 1(0) DE(2),
D,(z)=zB,_i(z) for n=N+1, and
B,.1(2)=2B,(z) + ,,,(0) B¥(z).  n=N.
Proof. If (¥,) is an SMOP, then the forward recurrence relation
o(2)=zP_1(2) + Pp(0) P4, _1(2), n=12,..
Together with (5) gives

@,(2%) + 2B, _1(2%) = 22D, _1(2%) + @,(0) D}_,(2?)
+zD,,_(z*) + ®,(0) zD*_ ,(z?), n=1,2,...

Since (@,) is an SMOP, we have @,(z)=z®,_(z) + @,(0) ®F_,(z), so
that

B, ((2)=D,_(2)+P,0) D_\(2), n=12,., (6)

where Df(z)=z" D,(1/Z), even if deg D, < n.
On the other hand, from

P i1(2)=2P,,(2) + Vs 1(0) PE(2),  n=0,1,2,..
the relation (5) gives
z®,(z%) + D, (z?) =z®,(z*) + z°B,,_,(z?)
+ D,(0) @}(z*)+ D,(0) zB¥_,(z?), n=0,1,2, ..,
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where Bjf(z)=:z" B,(1/Z), even if deg B, <n. Hence
D,(z%)=2?B,_(z*) + D,(0) @;(z%) + D,(0) zB;_(z?).

Thus, since D,(z?) is an even polynomial,

Do(o) = 57’1(0) (7)
D,(0) Bf_,(z)=0, n=1,2,..,
so that
D,(z)=zB,_1(2)+ D,(0) ®;(2) (8)

foralln=0,1,2, ...
We will consider two possible situations:

(1) D,(0)=0 for every n=0, 1, 2, .... Then, from (8)
D,(z)=zB, _.(z)
for n=0, 1, 2, ... Furthermore, in (6) we get
B,_(z)=zB,_,(z)+ ®,0) B}¥_,(z), n=1273, ...
Substituting n=1 in (6) gives
By(z)=0.

With this initial condition it follows that B,(z) =0 for every n=0, 1, ...
and D,(z)=0 for every n=0, 1, ....
In conclusion, we have in this case

T2n(z) = djn(zz)a

¢2n+ 1(z)= ngn(z2),

(i) D,(0)#£0 for at least one neN. Let N be a fixed nonnegative
integer and assume D,(0)#0. If N>1, then from (7), it follows that
By_1(z)=0. Using (6) Dpy_4(z)=0. Again from (8), By_»,(z)=0.
Repeating the process gives B,(z) =D;(z) =0 for k=0, 1, ..., N— 1. If there
exists M > N such that D,,(0)+#0, we get a contradiction because in such
a case, according to the above reasoning D ,(0) must vanish.
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Thus two cases appear:

(a) Dy(0)#0 and D,(0)=0,n=1,2,.... Then

Dy(z) =Do(0), a=By(z) =Dy(0) + D,(0) Dy(0) #0,
D,(z)=zB,_(z), n=1,2,..,
Bn(z):Zanl(Z)+d)n+l(0) B;kfl(z)s n=1,2,

This last relation means that the sequence of monic polynomials (V)
with V,(z) = B,(z)/B,(z) satisfies a forward recurrence relation as (2) with
reflection parameters V,(0) =e“®,, . ,(0), n=1, 2, .., and e = By(z)/By(z).

This corresponds to a shift in the sequence of reflection parameters and
(V,) is again a sequence of monic orthogonal polynomials. In fact

p(Z) ¢n+1(z) +q(2) ‘Qn+l(Z)

PEOTT won ®
where

P2) = (%~ By(0)) = + (1 ab,(0)

42) = (@(0) — %) 2 + (1 - eb,(0)
(see [7]).
Thus

YIZn(Z):¢n(22)—i_O(Zanfl(Zz)a n=0, 1:29
5112n+1(z):Z§i’2n(Z)a n=l,2,

while #,(z) =z + Do(0).

(b) DMO0)#0, N>1, and D,(0)=0 for n# N. Then B,,(z)=D,,(z)
=0, m=0,1, .., N—1. On the other hand, from (8)

Dy(z) =D y(0) DR (2).
From (6)
By(z) =Dn(z) + Py 11(0) DF(2).
But from (8)
D,(z)=zB,_(z), n=N+1, ..
and by substitution in (6)

B, (z)=zB,(z)+ ®,,,(0) BXz), n=N,N+1,.. (10)
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Taking into account that the leading coefficient of By is

oy =Dn(0) Dy(0) + Py, 1(0) Dy(0)

we get

(b.1) If @5(0)#0, ie., oy #0, then deg B,=n for n=N, N+1, ..,
and the sequence (B, n= N) can be obtained explicitly from (10).

(b.2) If @,(0)=0, then deg By=k<N—1. Thus, deg B,=k+n—N
for every n=N, N+ 1, ..., and the sequence (B,,n> N) can be obtained
explicitly from (10).

In both cases

{q’?Zn(Z) = ¢n(22)5 n= 0, 1, veey N
¢2n—l(z):Z¢n—l(22)7 n=1,2, aN

Pov+1(2) = 2@ 5(2%) + Dy (0) O3 (2%)

{¢I2n+2(z)=¢n+1(22)+ZBn(22): n=N,N—|—1,
¢2n+3(z)22¢2n+2(2), n=N,N+1,

with
B,(2) =zB,_1(2) + ®,..1(0) Bi_.(2)
forn>=N+1 and
By(2) =Dy(0) 9%(2) + Py 1(0) Dy(0) Dy(2). | (11)

As a conclusion, if |p| # 1, where y = D (0), there exists a unique SMOP
(¥,) such that the reflection parameters are

ijZn(O) = djn(o)) n= 0) 19 eey
@, (0)=0, n#N, (12)

Remark. Assume that a is a zero of By, i.e., By(a) =0, (N>1). Then
we have

[D ()] =Py 1(0)] [DF(a)]
and from (11)

[Dx(0)] [@F(o)] = Dy 1(0)] [Dy(0)] |Dpy(at)].
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Thus, in the positive definite case

|PF(a)l
| D p ()]

so that |a| > 1. So the monic polynomials corresponding to (B,) cannot be
an SMOP.

<1,

The next step will be an alternative way to deduce an explicit expression
for the sequence (¥,) in terms of the sequences (®,) and (£2,), where (Q,)
is the SMOP of the second kind for (®,,).

Taking into account (11), (¥,) is a finite perturbation of (¥,) at level
2N + 1, i.e., the reflection parameters of these two SMOP are the same for
m>=2N+ 2 (and in our case also coincide for m <2N).

Thus,
57jZn(Z) = @n(zz)a n= 0, 1, ey N
¢2n+l(z)=z®n(22): n=0,1,.,N—1

S?121\/+ 1(2) = 2@ (22) + 9P F(22).

For the remaining terms we have, taking into account Theorem 3.1
in [7],

[ZZN+1(Z) +A~§kN+1(Z)] ¢I2N+l+k(z) +[ 57I§k1v+1(z) — S7’2N+1(Z)] Z2N+1+k(2)
1—1y)?
=[Aoy1(2) + A3n1(2)] Poni144(2)
[P 1(2) = Pon1(2)] Aoy i1 44(2)

and

[Poni1(2)+ Pin i i(2)] Aoy 4 2) + [ Ady1(2) — Ao 1(2)] Pony144(2)
11—y

=[Yon1(2) + Vi 1(2)] Aoy i1 44(2)
+ [ A3y 1(2) = Aan1(2)] Vo1 44(2),

where (A4,) and (4, are, respectively, the sequences of monic polynomials
of the second kind associated with (¥,) and (¥,,).
In matrix form

1 <A:2N+1(Z) _~¢2N+1(Z)><y:ij+1+k(Z)>
1_|V|2 A3y 1(2) Vv () Aoy i1 44(2)

_ <A2N+ 1(2) =Py 1(2)><T2N+ 1 +k(2)>

An i1 Yiv+1(2) Aoy 44(2) ’
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Keeping in mind that
Yon(z)= @N(Zz)a Aon(z) :-QN(Z2),
W2N+1(Z):Z¢N(ZZ)7 A2N+1(Z):ZQN(ZZ)7
and
Pon1(2) =2P(2) + 7 Pin(2),
ZZN+ 1(z)= ZA~2N(Z) VAzN(Z)

we then find

<5E’2N+1+k(2)>

Aoy y144(2)

_(Z'QN(ZZ) —Z¢N(22)>_1<1 V><Z-QN(22) —zDy(z )><‘1’2N+1+k(2)>
Q¥(z%) o) 7oUNQ¥) =) N Ao 1a(2)

B 1 < D%(z?) szN(ZZ)>

2(Qn(27) PH() + 2F(27) Pp(2) \ = QF(2%) 2Q2x(27)

><<1 V><Z-QN(22) _Z@N(22)><¥’2N+1+k(z)>
7N QKZ2) P} N Aanii4i(2))

Taking into account that (see [4])

Qu(z2) PH(z2) + Q%(2) Dp(z) =22Ve )y =227 11_\’[ (1—12,(0)]?),

we get

<§I2N+l+k(z)>
Ao s144(2)
1 < DF(2%) + 27D n(2?) YDH(2%) + 2P y(2?) >

T2Vl \ —QE(22) +27Q(22) —pQ%(2) + 2Qx(22)

<ZQN(22) - Z¢N(22)>< Pone +k(2)>

Q822 (=Y N o1 anl(2)

1 <R(z> S<z>><T2N+1+k<z)> 13
_222N+1€N Uiz) Wz Aon 14k .
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Here
R(z) =22V "ley + 2270 y(2%) Qn(2) + y@3(27) Q%(2),
S(z) = p(@3(2%))* — 229 (P w(2?))%,
Uz) = —p(2%(2%)) + 2%7(Qn(2%))?,
V(z)=22*N*ley — 227@ (2%) Qp(22) — y@ (%) Q3%(22).

Thus, for m=N+1, ...,

Py(2) = Pol2) + 2;N N5 (=) Qp(22)

+y®%(2%) Q%(2%) D,(2%)
+ (P D{(2*))? — 72PN (%)) 2,(27)].
In other words

1
2enz

+yPH(2) QF(2)) D,(2) + (N PF(2))* = 72(Pn(2))?) 2,(2)].

B, 1(2) =557 [727Pn(2) Q(2)

If we denote by F the C-function associated with the SMOP { ¥, }, and
if we take into account Theorem 1, we get from (13)

ProrosITION 3.  For the Carathéodory function associated with SMOP
(¥,) we have the relation

Proof. For n=2N+1 we have

A7(z) _ —Uz) ¥7(2) + V(2) 4,(2)
Wi(z)  R(z) i(z)—S(2) 43(2)

according to (13). Then
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Recall that, in the positive definite case, the measure du belongs to the
Szegd class when (@,(0)) € /,. In this case we can define the Szegd function
as

1 (7 14+ze 7 )
D(z; du) =exp {47: j7 mlogu (0) dﬁ}, lz| <1

(see [10]) and furthermore

LK,
D(z; d,u)zhin B*(2) (14)

locally uniformly in |z| < 1.

PROPOSITION 4. Let du be in the Szegé class. For yeC, |y| <1, there
exists a measure dv associated with the polynomials (¥,), which belongs to
the Szegd class. Moreover, the corresponding Szegd function is

D(z%, du)

Dz d0) = (1= g5 Aoy

|z| <1.

Proof. According to (14) we have

=P,
n R(z) D}(2?) — S(z) Q}(2?)
K,/ DX(2%)
R(z) = S(z) (QK(z?)/D}(2?))
D(z% du)
R(z)—S(z) F(?)

= (1= [/~ 1im

=(1=p~1?

in |z <1 |

3. SOME EXAMPLES

1. Real Parameters

We illustrate the preceding results with some examples. First, we consider
real Schur parameters @,(0)eR (n>0), |®,(0)| <1, as well as yeR and
Iyl < 1.
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The relation between orthogonal polynomials on the unit circle (@,,), <
and orthogonal polynomials (P,),.n on the real axis is well known.
(See [4, 10, 117.)

In fact, if

xpn(x) :Pn+l(x) +ﬂnPn(x) +ynPn—l(x)

then

2B, =Dy 1(0)(1 = D2, (0)) = P, 4 1(0)(1 + D,,(0)),
Aypi1=(1=D5, 1 5(0))(1 = D3, 1(0)(1 + P,,(0)).
If denote by (P,), . the SMOP on R associated to (%), . and by /5,

7, respectively the coefficients of the corresponding three-term recurrence
relation, we can deduce in a straightforward way that

£,=0, n#N,N+1
2By = =71+ ®(0)),
2By 1=7(1+®x(0)),
49,01 =(14+ @, 1(0)(1+D,0))., n#N,
Ay s =1—Dy 1(0))(1—y*)(1+Dy(0)).

We now take into consideration the polynomials (P,). We can express
them in terms of (P,), via the family (P,,), associated with the SMOP ().
For the case @,(0)eR (n>=0), the relation between @, and P, can be

written (see [10])

— ¢2n(z) + QD;n(Z) — Z¢2n71(z) + ¢§kn71(z)
(1+ &,,(0)) 27" 2z ;

P, (x)

where x = (z +2z7!)/2. In a similar way, for the second kind of polynomials
we can define the SMOP (Q,).7_, (see [7])

:Z-an—l(z) +Q3,_1(2)

0,(x) o :
and
lyPﬁ,lll(X) _ 280,, _4(z) — 'QZn—l(Z),
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where (P") and (Q'") are the first kind associated SMOP and y = (z —z~1),2i.
Thus
@y, _1(2)=2"712" TP (x) + iy QL (X)),
@3, _1(2)=2""12"(P,(x) =iy QL 1(x)), (15)
(2) =2""12" 1 (Qu(x) + iy P (X)),
_1(2)=2"712(Q,(x) — iy PR ().

Keeping in mind the definition of (¥,)_,, we get

BT B
P’"(X)_(l T @,(0)) 2"

For m =2n the above expression becomes

D _ @2'1(22) + dsikn(zz)
P2n(-x) - (1 + ¢2n(0)) 22n22n'

If we denote w =z u=(w+w=")/2, v=(w—w~")/2i, we have u =2x* — 1,
v=2xy. Then from (15)

P, (x)=27"P,(2x>—1).
Similarly, for m=2n+1,

Pop1(W) + D3, 1(w)
(1+ @y, ,(0)) 22 12+ 1
 Po) + 00 D(0) + W[ Py a() — 0Q(w)]
- (14 ®,,,,(0)) 2"z
xP,  1(2x* —1) +2x(1 —x?) Q0P(2x*—1)
- 2"(1 + @s,,4(0))

F2n+l(x) =

In both cases, for n> N+ 1, P, can be given in terms of P, in the following
way.
From (13)
Pn(x) — ¢2n(z) + ¢§n(j)ﬂ
(1+%,,00))2"z
_ 1 R(z) ¥5,(2) + S(z) ¥3,(2)
(14 %,,(0)) 272" 22N+ e
4 R*(z) ¥3,(2) + §*(2) l1’2,,(2)}

2N+1
2z ey
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By considering that R*(z) = R(z) and S*(z) = —S(z), we have

5 _ RE)[¥r(2) + ¥35.(2)] + S(2)[45,(2) — 43,(2)]

P =
n(x) (1 + y/zn(o)) 2nzn222N+ leN
R(z) Sz -
:222N+16N P(x) 22N+ iyPM (%),

Since y € R, from (13) and (15) we get
R(z)=22"" ey + 79[ Waon 4 1(2) Aoy 1(2) + Py 1(2) Ay 1(2)]
:222N+1€N+22N22N+1V[(FN+1(X) QN+1(X)
—y*PY(x) OV (x)(z+z71)
—iP(Py1(x) PRUX) + Onsa(x) OF(X))(z—27 )]

Thus,
22N _ _ _ _
vt =1+ TPy () Oy () = (1= %) P O()
z en en
(1) Py (6) P + O i) Q0]
= p(x),

where p is a polynomial of degree less than or equal to 2N + 3.
In an analogous way

S(z) = [ Phn11(2) — Poy1(2)]
= 22NN (PY L (x) =y O () —27)
—2iyPy 1(x) OP(x)(z+271)].
Then

S _ . _ _
S = 2Py ()~ PO () — 5Py (x) Q)] i = —ie()

with deg 0 <2N + 2. In both cases, R(z)/2?NT1z22¥+1! and S(z)/22N+ 12N +1
can be expressed in terms of Chebyshev polynomials of the first and second
kind

N

p(x)= 3, a;Ton i1 _p(x), —iyo(x)=(z—z"")
j=0 j

ﬁj U2N72j(x)a

I M=

0
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where «; and f8; are real coefficients, depending on the Schur parameters
(2,(0))/ .
Now, we have

P(x) = p(x) Py(x) + (1 =x%) a(x) PP(x).
So, we have deduced the relation between (P,) and (P,).

2. Bernstein—Szegé Polynomials

Now we consider Bernstein—Szegé type polynomials, i.e., the SMOP
defined by

®,0)=0, Vn=k+1, k>0,

and |®,(0)| <1, n<k.
We will maintain the notation of the previous sections. Then, the corre-
sponding C-function is

_Qk(2)

Fa =%

Now, we make the perturbation at level 2N + 1 with N > k. Thus
l‘?/2N+ 1(2) =z2¥5n(2) + 7 ¥ 3n(2),
A~2N+ 1(2) = zA455(2) — yA3N(2),

(lyl <1), and for m=2N +1,

Pir(2) ="M 1 (2),

A~m+ i(z) = ZmizN/TzN+ 1(2).

As a consequence we have

B ¢§N+1(2) Pin(z) +7z%¥,n(2)

_Q}(?) —7zQy
CPH(P) + 2Dy

F(Z) _ Z§N+ 1(2) AfNEZ) —7z4,5(2)

(2%) _QF*) — 72V 01Q,(2?)
(ZZ) ¢*(22) +?22(N7k)+1¢k(22)'
If F has a pole « on T, then

|@F(o?)] = |72V =0T 1D (o)
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with a=e® Then, from |®(e*?)| =|D.(e*?)|, we deduce |y| =1, which
contradicts |y| < 1. So, the corresponding orthogonality measure is absolutely
continuous. (See [7].)

Notice that the Bernstein—Szegé class is preserved under such a transfor-
mation of the Schur parameters.

Furthermore, in the positive definite case, the Szegd function is

Ky
%

D(z; du) = BF)

The modified Szegé function can be written as

~ }%2N+1
=gy )

A=)y (=)
Vi) + 2 Wan(z) | DF() + 72 P (22)

Notice that when k=0, (Lebesgue measure) we have

_ 1 _ j;ZZNJr 1
Fz)= T2
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