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1. INTRODUCTION

Let M=[ci& j]
�
i, j=0 be an Hermitian Toeplitz matrix, i.e., c&k=c� k . We

will denote by Mn the principal submatrix of size n+1. We will assume
2n=det Mn {0 for every n=0, 1, 2, ... .

It is well known [4] that the sequence of monic polynomials (8n)�
n=0

given by

c0 c1 } } } cn

c1 c0 } } } cn&1

8n(z)=
1

2n&1 } } } } } } } } } } } } } } , n=1, 2, ...,

c� n&1 c� n&2 } } } c1

1 z } } } zn

80(z)=1
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is a sequence of monic orthogonal polynomials with respect to the inner
product in P, the linear space of polynomials with complex coefficients,

( p, q)=�L, p(z) q� \1
z+� . (1)

Here L is the linear functional defined on the linear space of Laurent
polynomials L in the following way

(L, zn)=cn , n=0, 1, 2, ...,

(L, z&n)=cn , n=0, 1, 2, ... .

Notice that L=span[zn]�
n=&� and P/L.

If 2n>0, n=0, 1, ..., the linear functional L is said to be a positive
definite linear functional. In such a case, there exists a finite positive Borel
measure + supported on [&?, ?), such that

(L, p) =|
?

&?
p(ei%) d+(%).

Taking into account (1) it is straightforward to deduce that the shift
operator is isometric with respect to (1), i.e.,

(zp, zq)=( p, q), p, q # P.

As a consequence of this fact, we can deduce two equivalent ways to
generate the sequence of monic orthogonal polynomials (SMOP) (8n).
They were obtained by Szego� [10] in the positive definite case and by
Geronimus [4] in the general situation stated above:

Forward recurrence relation,

8n(z)=z8n&1(z)+8n(0) 8*n&1(z), n=1, 2, ...
(2)

80(z)=1,

Backward recurrence relation,

8n(z)=(1&|8n(0)|2) z8n&1(z)+8n(0) 8n*(z), n=1, 2, ...
(3)

80(z)=1,

where

8n*(z)=zn8n(1�z� )
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is the so-called reversed polynomial of 8n . The values 8n(0) are called the
reflection (or Schur) parameters for the linear functional L. A straight-
forward computation yields

1&|8n(0)| 2=
2n 2n&2

22
n&1

.

We will denote k2
n=(8n , 8n)=2n �2n&1=en .

Thus, in the positive definite case |8n(0)|<1 while in the general case
considered in this section, |8n(0)|{1.

Conversely, given a sequence of complex numbers (an)�
n=0 with |an |{1,

n=1, 2, ..., and a0=1, there exists a linear functional L such that (an)�
n=0

is the sequence of reflection parameters for the functional, or, equivalently,
an=8n(0) where (8n) is the corresponding sequence of monic orthogonal
polynomials with respect to L. This result is an analog of Favard's
theorem. (See [3] for the positive definite case and [4, Theorem 4.1] for
the general case.)

According to this last result, there exists a linear functional L� , or equiv-
alently, a sequence of monic orthogonal polynomials (0n) associated with
L� , such that 0n(0)=&an , n=1, 2, ... .

(0n) is called the SMOP of the second kind associated with L.
These polynomials can be explicitly given by

0n(z)=
1
c0 �L,

y+z
y&z

[8n( y)&8n(z)]� ,

where L acts on the variable y in the right hand side polynomial in two
variables.

Finally, we can associate with the linear functional L a formal series

F(z) :=c0+2 :
�

n=1

c� nzn. (4)

In the positive definite case, F is an analytic function in the unit disk and
Re F(z)�0. In the literature, F is said to be a Carathe� odory function or
C-function. (See [7].) The connection with Schur functions and the Schur
algorithm is analyzed in [1].

The link between the formal series F and the sequences (8n) and (0n) is
the following
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Theorem 1 [8]. The sequence of monic orthogonal polynomials (8n),
the corresponding polynomials of the second kind (0n), and the Carathe� odory
function F, satisfy the relation

8n(z) F(z)+0n(z)=O(zn),

8n*(z) F(z)&0n*(z)=O(zn+1)

for z � 0.

In comparison with the real case (see [2]), very few explicit examples of
SMOP with respect to a linear functional are known in the literature.

A way to generate a new SMOP from a given SMOP (8n) is to consider
a sieving process. Unfortunately, there is a strong constraint. For instance
��and this is a basic difference with the real case��there exists a unique
SMOP (9n) such that 92n+1(z)=z8n(z2). Furthermore, 92n(z)=8n(z2).
See [5, 6].

In terms of the reflection parameters, this means that the linear trans-
form T in the space of the sequences of reflection parameters is given by

T(a2n)=an , n=0, 1, 2, ...

T(a2n+1)=0, n=0, 1, 2, ...

with 8n(0)=an .
For the corresponding formal series,

FT (z)=F(z2)

holds.
The aim of our contribution is the analysis of necessary and sufficient

conditions in order that a sequence of polynomials (9� n) defined as a per-
turbation of (9n) in the following way

9� 2n(z)=8n(z2)+zBn&1(z2)
(5)

9� 2n+1(z)=z8n(z2)+Dn(z2)

with n=0, 1, ..., B&1 #0, and deg Bn&1�n&1, deg Dn�n, be an SMOP.
Next we deduce the expression of the formal series F� in terms of the formal
series F corresponding to the linear functional L and the relation between
the corresponding Szego� functions. The particular situation when L is a
positive definite functional will be considered. Finally we illustrate the
preceding with some examples: the case of real Schur parameters and
Bernstein�Szego� polynomials.
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Our results are a continuation of work started in [6], which is the unit
circle analog of a problem raised and solved in the real case by T. S. Chihara
and L. Chihara [2].

2. CONDITIONS FOR ORTHOGONALITY

Theorem 2. Suppose that an SMOP (8n) is given. Then the sequence
(9� n), defined by (5) is an SMOP if and only if Dn(0){0 for at most one
n # [0, 1, 2, ...], and the polynomials (Bn) and (Dn) satisfy:

(a) if Dn(0)=0 for all n=0, 1, 2, ..., then Bn(z)=Dn(z)=0 for all
n=0, 1, ...;

(b) if DN(0){0, then Bn(z)=Dn(z)=0 for n=0, 1, ..., N&1,

DN(z)=DN(0) 8*N(z), BN(z)=DN(z)+8N+1(0) D*N(z),

Dn(z)=zBn&1(z) for n�N+1, and

Bn+1(z)=zBn(z)+8n+2(0) Bn*(z), n�N.

Proof. If (9� n) is an SMOP, then the forward recurrence relation

9� 2n(z)=z9� 2n&1(z)+9� 2n(0) 9� *2n&1(z), n=1, 2, ...

Together with (5) gives

8n(z2)+zBn&1(z2)=z28n&1(z2)+8n(0) 8*n&1(z2)

+zDn&1(z2)+8n(0) zD*n&1(z2), n=1, 2, ... .

Since (8n) is an SMOP, we have 8n(z)=z8n&1(z)+8n(0) 8*n&1(z), so
that

Bn&1(z)=Dn&1(z)+8n(0) D*n&1(z), n=1, 2, ..., (6)

where Dn*(z)=zn Dn(1�z� ), even if deg Dn�n.
On the other hand, from

9� 2n+1(z)=z9� 2n(z)+9� 2n+1(0) 9� *2n(z), n=0, 1, 2, ...

the relation (5) gives

z8n(z2)+Dn(z2)=z8n(z2)+z2Bn&1(z2)

+Dn(0) 8n*(z2)+Dn(0) zB*n&1(z2), n=0, 1, 2, ...,
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where Bn*(z)=zn Bn(1�z� ), even if deg Bn�n. Hence

Dn(z2)=z2Bn&1(z2)+Dn(0) 8n*(z2)+Dn(0) zB*n&1(z2).

Thus, since Dn(z2) is an even polynomial,

D0(0)=9� 1(0)
(7)

Dn(0) B*n&1(z)=0, n=1, 2, ...,

so that

Dn(z)=zBn&1(z)+Dn(0) 8n*(z) (8)

for all n=0, 1, 2, ... .
We will consider two possible situations:

(i) Dn(0)=0 for every n=0, 1, 2, ... . Then, from (8)

Dn(z)=zBn&1(z)

for n=0, 1, 2, ... . Furthermore, in (6) we get

Bn&1(z)=zBn&2(z)+8n(0) B*n&2(z), n=1, 2, 3, ... .

Substituting n=1 in (6) gives

B0(z)=0.

With this initial condition it follows that Bn(z)=0 for every n=0, 1, ...
and Dn(z)=0 for every n=0, 1, ... .

In conclusion, we have in this case

9� 2n(z)=8n(z2),

9� 2n+1(z)=z8n(z2).

(ii) Dn(0){0 for at least one n # N. Let N be a fixed nonnegative
integer and assume DN(0){0. If N�1, then from (7), it follows that
BN&1(z)=0. Using (6) DN&1(z)=0. Again from (8), BN&2(z)=0.
Repeating the process gives Bk(z)=Dk(z)=0 for k=0, 1, ..., N&1. If there
exists M>N such that DM(0){0, we get a contradiction because in such
a case, according to the above reasoning DN(0) must vanish.
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Thus two cases appear:

(a) D0(0){0 and Dn(0)=0, n=1, 2, ... . Then

D0(z)=D0(0), :=B0(z)=D0(0)+81(0) D0(0){0,

Dn(z)=zBn&1(z), n=1, 2, ...,

Bn(z)=zBn&1(z)+8n+1(0) B*n&1(z), n=1, 2, ...

This last relation means that the sequence of monic polynomials (Vn)
with Vn(z)=Bn(z)�B0(z) satisfies a forward recurrence relation as (2) with
reflection parameters Vn(0)=ei.8n+1(0), n=1, 2, ..., and ei.=B0(z)�B0(z).
This corresponds to a shift in the sequence of reflection parameters and
(Vn) is again a sequence of monic orthogonal polynomials. In fact

Vn(z)=
p(z) 8n+1(z)+q(z) 0n+1(z)

2z(1&|81(0)|2)
, (9)

where

p(z)=(ei.&81(0)) z+(1&ei.81(0))

q(z)=(81(0)&ei.) z+(1&ei.81(0))

(see [7]).
Thus

9� 2n(z)=8n(z2)+:zVn&1(z2), n=0, 1, 2, ...

9� 2n+1(z)=z9� 2n(z), n=1, 2, ...

while 9� 1(z)=z+D0(0).

(b) DN(0){0, N�1, and Dn(0)=0 for n{N. Then Bm(z)=Dm(z)
=0, m=0, 1, ..., N&1. On the other hand, from (8)

DN(z)=DN(0) 8*N(z).

From (6)

BN(z)=DN(z)+8N+1(0) D*N(z).

But from (8)

Dn(z)=zBn&1(z), n=N+1, ...

and by substitution in (6)

Bn+1(z)=zBn(z)+8n+2(0) Bn*(z), n=N, N+1, ... . (10)
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Taking into account that the leading coefficient of BN is

:N=DN(0) 8N(0)+8N+1(0) DN(0)

we get

(b.1) If 8N(0){0, i.e., :N {0, then deg Bn=n for n=N, N+1, ...,
and the sequence (Bn , n�N) can be obtained explicitly from (10).

(b.2) If 8N(0)=0, then deg BN=k�N&1. Thus, deg Bn=k+n&N
for every n=N, N+1, ..., and the sequence (Bn , n�N) can be obtained
explicitly from (10).

In both cases

{9� 2n(z)=8n(z2),
9� 2n&1(z)=z8n&1(z2),

n=0, 1, ..., N
n=1, 2, ..., N

9� 2N+1(z)=z8N(z2)+DN(0) 8*N(z2)

{9� 2n+2(z)=8n+1(z2)+zBn(z2),
9� 2n+3(z)=z9� 2n+2(z),

n=N, N+1, ...
n=N, N+1, ...

with

Bn(z)=zBn&1(z)+8n+1(0) B*n&1(z)

for n�N+1 and

BN(z)=DN(0) 8*N(z)+8N+1(0) DN(0) 8N(z). K (11)

As a conclusion, if |#|{1, where #=DN(0), there exists a unique SMOP
(9� n) such that the reflection parameters are

9� 2n(0)=8n(0), n=0, 1, ...,

{9� 2n+1(0)=0, n{N, (12)

9� 2N+1(0)=#.

Remark. Assume that : is a zero of BN , i.e., BN(:)=0, (N�1). Then
we have

|DN(:)|=|8N+1(0)| |D*N(:)|

and from (11)

|DN(0)| |8*N(:)|=|8N+1(0)| |DN(0)| |8N(:)|.
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Thus, in the positive definite case

|8*N(:)|
|8N(:)|

<1,

so that |:|>1. So the monic polynomials corresponding to (Bn) cannot be
an SMOP.

The next step will be an alternative way to deduce an explicit expression
for the sequence (9� n) in terms of the sequences (8n) and (0n), where (0n)
is the SMOP of the second kind for (8n).

Taking into account (11), (9� n) is a finite perturbation of (9n) at level
2N+1, i.e., the reflection parameters of these two SMOP are the same for
m�2N+2 (and in our case also coincide for m�2N).

Thus,

9� 2n(z)=8n(z2), n=0, 1, ..., N

{9� 2n+1(z)=z8n(z2), n=0, 1, ..., N&1

9� 2N+1(z)=z8N(z2)+#8*N(z2).

For the remaining terms we have, taking into account Theorem 3.1
in [7],

[4� 2N+1(z)+4� *2N+1(z)] 9� 2N+1+k(z)+[9� *2N+1(z)&9� 2N+1(z)] 4� 2N+1+k(z)
1&|#|2

=[42N+1(z)+4*2N+1(z)] 92N+1+k(z)

+[9*2N+1(z)&92N+1(z)] 42N+1+k(z)

and

[9� 2N+1(z)+9� *2N+1(z)] 4� 2N+1+k(z)+[4� *2N+1(z)&4� 2N+1(z)] 9� 2N+1+k(z)
1&|#|2

=[92N+1(z)+9*2N+1(z)] 42N+1+k(z)

+[4*2N+1(z)&42N+1(z)] 92N+1+k(z),

where (4� n) and (4n) are, respectively, the sequences of monic polynomials
of the second kind associated with (9� n) and (9n).

In matrix form

1
1&|#|2 \4� 2N+1(z)

4� *2N+1(z)
&9� 2N+1(z)
9� *2N+1(z) +\9� 2N+1+k(z)

4� 2N+1+k(z)+
=\42N+1(z)

4*2N+1

&92N+1(z)
9*2N+1(z) +\92N+1+k(z)

42N+1+k(z)+ .
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Keeping in mind that

92N(z)=8N(z2), 42N(z)=0N(z2),

92N+1(z)=z8N(z2), 42N+1(z)=z0N(z2),

and

9� 2N+1(z)=z9� 2N(z)+#9� *2N(z),

4� 2N+1(z)=z4� 2N(z)&#4� *2N(z),

we then find

\9� 2N+1+k(z)
4� 2N+1+k(z)+

=\z0N(z2)
0*N(z2)

&z8N(z2)
8*N(z2) +

&1

\1
#�

#
1+\

z0N(z2)
0*N(z2)

&z8N(z2)
8*N(z2) +\92N+1+k(z)

42N+1+k(z)+
=

1
z(0N(z2) 8*N(z2)+0*N(z2) 8N(z2)) \

8*N(z2)
&0*N(z2)

z8N(z2)
z0N(z2)+

_\1
#�

#
1+\

z0N(z2)
0*N(z2)

&z8N(z2)
8*N(z2) +\92N+1+k(z)

42N+1+k(z)+ .

Taking into account that (see [4])

0N(z) 8*N(z)+0*N(z) 8N(z)=2zNeN=2zN `
N

i=1

(1&|8i (0)|2),

we get

\9� 2N+1+k(z)
4� 2N+1+k(z)+

=
1

2z2N+1eN \ 8*N(z2)+z#� 8N(z2)
&0*N(z2)+z#� 0N(z2)

#8*N(z2)+z8N(z2)
&#0*N(z2)+z0N(z2)+

} \z0N(z2)
0*N(z2)

&z8N(z2)
8*N(z2) +\92N+1+k(z)

42N+1+k(z)+
=

1
2z2N+1eN \R(z)

U(z)
S(z)
V(z)+\

92N+1+k(z)
42N+1+k + . (13)
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Here

R(z)=2z2N+1eN+z2#� 8N(z2) 0N(z2)+#8*N(z2) 0*N(z2),

S(z)=#(8*N(z2))2&z2#� (8N(z2))2,

U(z)=&#(0*N(z2))2+z2#� (0N(z2))2,

V(z)=2z2N+1eN&z2#� 8N(z2) 0N(z2)&#8*N(z2) 0*N(z2).

Thus, for m=N+1, ...,

9� 2m(z)=92m(z)+
1

2eN
z2N+1[(#� z28N(z2) 0N(z2)

+#8*N(z2) 0*N(z2)) 8m(z2)

+(#(8*N(z2))2&#� z2(8N(z2))2) 0m(z2)].

In other words

Bm&1(z)=
1

2eNzN+1 [#� z28N(z) 0N(z)

+#8*N(z) 0*N(z)) 8m(z)+(#(8*N(z))2&#� z(8N(z))2) 0m(z)].

If we denote by F� the C-function associated with the SMOP [9� n], and
if we take into account Theorem 1, we get from (13)

Proposition 3. For the Carathe� odory function associated with SMOP
(9� n) we have the relation

F� (z)=
V(z) F(z2)&U(z)

&S(z) F(z2)+R(z)
.

Proof. For n�2N+1 we have

4n*(z)
9 n*(z)

=
&U(z) 9 n*(z)+V(z) 4n*(z)

R(z) 9n*(z)&S(z) 4n*(z)

according to (13). Then

F� (z)=lim
n

4� n*(z)
9� n*(z)

=
&U(z) F(z2)+V(z)

R(z)&S(z) F(z2)
. K
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Recall that, in the positive definite case, the measure d+ belongs to the
Szego� class when (8n(0)) # l2 . In this case we can define the Szego� function
as

D(z; d+)=exp { 1
4? |

?

&?

1+ze&i%

1&ze&i% log +$(%) d%= , |z|<1

(see [10]) and furthermore

D(z; d+)=lim
n

}n

8n*(z)
(14)

locally uniformly in |z|<1.

Proposition 4. Let d+ be in the Szego� class. For # # C, |#|<1, there
exists a measure d&~ associated with the polynomials (9� n), which belongs to
the Szego� class. Moreover, the corresponding Szego� function is

D(z; d&~ )=(1&|#|2)&1�2 D(z2, d+)
R(z)&S(z) F(z)

, |z|<1.

Proof. According to (14) we have

D(z; d&~ )=lim
n

}~ n

8� n*(z)

=lim
n

(1&|#|2)&1�2 }n

R(z) 8n*(z2)&S(z) 0n*(z2)

=(1&|#|2)&1�2 lim
n

}n �8n*(z2)
R(z)&S(z) (0n*(z2)�8n*(z2))

=(1&|#|2)&1�2 D(z2; d+)
R(z)&S(z) F(z2)

in |z|<1. K

3. SOME EXAMPLES

1. Real Parameters

We illustrate the preceding results with some examples. First, we consider
real Schur parameters 8n(0) # R (n�0), |8n(0)|<1, as well as # # R and
|#|<1.
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The relation between orthogonal polynomials on the unit circle (8n)n # N

and orthogonal polynomials (Pn)n # N on the real axis is well known.
(See [4, 10, 11].)

In fact, if

xPn(x)=Pn+1(x)+;n Pn(x)+#nPn&1(x)

then

2;n=82n&1(0)(1&82n(0))&82n+1(0)(1+82n(0)),

4#n+1=(1&82n+2(0))(1&82
2n+1(0))(1+82n(0)).

If denote by (P� n)n # N the SMOP on R associated to (9� n)n # N and by ;� n ,
#~ n respectively the coefficients of the corresponding three-term recurrence
relation, we can deduce in a straightforward way that

;� n=0, n{N, N+1

2;� N=&#(1+8N(0)),

2;� N+1=#(1+8N(0)),

4#~ n+1=(1+8n+1(0))(1+8n(0)), n{N,

4#~ N+1=(1&8N+1(0))(1&#2)(1+8N(0)).

We now take into consideration the polynomials (P� n). We can express
them in terms of (Pn), via the family (P� n), associated with the SMOP (9n).

For the case 8n(0) # R (n�0), the relation between 8n and Pn can be
written (see [10])

Pn(x)=
82n(z)+8*2n(z)

(1+82n(0)) 2nzn=
z82n&1(z)+8*2n&1(z)

2nzn ,

where x=(z+z&1)�2. In a similar way, for the second kind of polynomials
we can define the SMOP (Qn)�

n=0 (see [7])

Qn(x)=
z02n&1(z)+0*2n&1(z)

2nzn ,

and

iyP (1)
n&1(x)=

z02n&1(z)&0*2n&1(z)
2nzn ,

iyQ (1)
n&1(x)=

z82n&1(z)&8*2n&1(z)
2nzn ,
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where (P(1)
n ) and (Q(1)

n ) are the first kind associated SMOP and y=(z&z&1)�2i.
Thus

82n&1(z)=2n&1zn&1(Pn(x)+iyQ (1)
n&1(x)),

8*2n&1(z)=2n&1zn(Pn(x)&iyQ (1)
n&1(x)),

(15)
02n&1(z)=2n&1zn&1(Qn(x)+iyP (1)

n&1(x)),

0*2n&1(z)=2n&1zn(Qn(x)&iyP(1)
n&1(x)).

Keeping in mind the definition of (9n)�
n=0 , we get

P� m(x)=
8m(z2)+8*m(z2)
(1+8m(0)) 2mzm .

For m=2n the above expression becomes

P� 2n(x)=
82n(z2)+8*2n(z2)
(1+82n(0)) 22nz2n .

If we denote w=z2, u=(w+w&1)�2, v=(w&w&1)�2i, we have u=2x2&1,
v=2xy. Then from (15)

P� 2n(x)=2&nPn(2x2&1).

Similarly, for m=2n+1,

P� 2n+1(x)=
82n+1(w)+8*2n+1(w)

(1+82n+1(0)) 22n+1z2n+1

=
Pn+1(u)+ivQ (1)

n (u)+w[Pn+1(u)&ivQ (1)
n (u)]

(1+82n+1(0)) 2n+1z

=
xPn+1(2x2&1)+2x(1&x2) Q (1)

n (2x2&1)
2n(1+82n+1(0))

.

In both cases, for n�N+1, P� n can be given in terms of P� n in the following
way.

From (13)

P� n(x)=
9� 2n(z)+9� *2n(z)

(1+92n(0)) 2nzn

=
1

(1+92n(0)) 2nzn _R(z) 92n(z)+S(z) 9*2n(z)
2z2N+1eN

+
R*(z) 9*2n(z)+S*(z) 92n(z)

2z2N+1eN & .
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By considering that R*(z)=R(z) and S*(z)=&S(z), we have

P� n(x)=
R(z)[92n(z)+9*2n(z)]+S(z)[42n(z)&4*2n(z)]

(1+92n(0)) 2nzn2z2N+1eN

=
R(z)

2z2N+1eN
P� n(x)+

S(z)
2z2N+1eN

iyP� (1)
n&1(x).

Since # # R, from (13) and (15) we get

R(z)=2z2N+1eN+#[92N+1(z)42N+1(z)+9*2N+1(z) 4*2N+1(z)]

=2z2N+1eN+22Nz2N+1#[(P� N+1(x) Q� N+1(x)

& y2P� (1)
N (x) Q� (1)

N (x))(z+z&1)

&iy(P� N+1(x) P� (1)
N (x)+Q� N+1(x) Q� (1)

N (x))(z&z&1)].

Thus,

R(z)
2z2N+1eN

=1+
22N#
eN

[x(P� N+1(x) Q� N+1(x)&(1&x2) P� (1)
N (x) Q� (1)

N (x))

+(1&x2)(P� N+1(x) P� (1)
N (x)+Q� N+1(x) Q� (1)

N (x))]

=\(x),

where \ is a polynomial of degree less than or equal to 2N+3.
In an analogous way

S(z)=#[9*
2

2N+1(z)&9 2
2N+1(z)]

=22Nz2N+1#[(P� 2
N+1(x)& y2Q� (1) 2

N (x))(z&z&1)

&2iyP� N+1(x) Q� (1)
N (x)(z+z&1)].

Then

S(z)
2z2N+1eN

=22N#[P� 2
N+1(x)& y2Q� (1) 2

N (x)&2xP� N+1(x) Q� (1)
N (x)] iy=&iy_(x)

with deg _�2N+2. In both cases, R(z)�22N+1z2N+1 and S(z)�22N+1z2N+1

can be expressed in terms of Chebyshev polynomials of the first and second
kind

\(x)= :
N

j=0

:jT2N+1&2j (x), &iy_(x)=(z&z&1) :
N

j=0

; jU2N&2 j (x),
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where :j and ;j are real coefficients, depending on the Schur parameters
(8j (0))N

j=0 .
Now, we have

P� n(x)=\(x) P� n(x)+(1&x2) _(x) P� (1)
n (x).

So, we have deduced the relation between (P� n) and (Pn).

2. Bernstein�Szego� Polynomials

Now we consider Bernstein�Szego� type polynomials, i.e., the SMOP
defined by

8n(0)=0, \n�k+1, k�0,

and |8n(0)|<1, n�k.
We will maintain the notation of the previous sections. Then, the corre-

sponding C-function is

F(z)=
0k*(z)
8k*(z)

.

Now, we make the perturbation at level 2N+1 with N�k. Thus

9� 2N+1(z)=z92N(z)+#9*2N(z),

4� 2N+1(z)=z42N(z)&#4*2N(z),

( |#|<1), and for m�2N+1,

9� m+1(z)=zm&2N9� 2N+1(z),

4� m+1(z)=zm&2N4� 2N+1(z).

As a consequence we have

F� (z)=
4� *2N+1(z)
9� *2N+1(z)

=
4*2N(z)&#� z42N(z)
9*2N(z)+#� z92N(z)

=
0*N(z2)&#� z0N(z2)
8*N(z2)+#� z8N(z2)

=
0k*(z2)&#� z2(N&k)+10k(z2)
8k*(z2)+#� z2(N&k)+18k(z2)

.

If F� has a pole : on T, then

|8k*(:2)|=|#� :2(N&k)+18k(:2)|
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with :=ei%. Then, from |8k*(e2i%)|=|8k(e2i%)|, we deduce |#|=1, which
contradicts |#|<1. So, the corresponding orthogonality measure is absolutely
continuous. (See [7].)

Notice that the Bernstein�Szego� class is preserved under such a transfor-
mation of the Schur parameters.

Furthermore, in the positive definite case, the Szego� function is

D(z; d+)=
}k

8k*(z)
.

The modified Szego� function can be written as

D(z; d&~ )=
}~ 2N+1

9� *2N+1(z)

=
(1&|#|2)&1�2 }N

9*2N(z)+#� z92N(z)
=

(1&|#|2)&1�2 }k

8k*(z2)+#� z2(N&k)+18k(z2)
.

Notice that when k=0, (Lebesgue measure) we have

F� (z)=
1&#� z2N+1

1+#z2N+1 .
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