A Class of Nonsymmetric Orthogonal Polynomials on the Unit Circle

María José Cantero

Departamento de Matemática Aplicada, Universidad de Zaragoza, Zaragoza, Spain

Francisco Marcellán

Departamento de Matemáticas, Universidad Carlos III de Madrid, Calle Butarque 15, Madrid, Leganés 28911, Spain

and

Leandro Moral

Departamento de Matemática Aplicada, Universidad de Zaragoza, Zaragoza, Spain Communicated by Walter Van Assche

Received December 22, 1998; accepted in revised form November 6, 2000; published online February 5, 2001

We investigate a particular quadratic decomposition for sequences of orthogonal polynomials, related to quasi-definite functionals on the unit circle. A constructive method is analyzed in order to generate nonsymmetric orthogonal polynomials. © 2001 Academic Press

Key Words: orthogonal polynomials; reflection parameters; Caratheódory functions.

1. INTRODUCTION

Let $M = [c_{i-j}]_{i,j=0}^{\infty}$ be an Hermitian Toeplitz matrix, i.e., $c_{-k} = \bar{c}_k$. We will denote by M_n the principal submatrix of size n+1. We will assume $\Delta_n = \det M_n \neq 0$ for every n = 0, 1, 2, ...

It is well known [4] that the sequence of monic polynomials $(\Phi_n)_{n=0}^{\infty}$ given by

$$\Phi_{n}(z) = \frac{1}{\varDelta_{n-1}} \begin{vmatrix} c_{0} & c_{1} & \cdots & c_{n} \\ \overline{c_{1}} & c_{0} & \cdots & c_{n-1} \\ \cdots & \cdots & \cdots & \cdots \\ \overline{c_{n-1}} & \overline{c_{n-2}} & \cdots & c_{1} \\ 1 & z & \cdots & z^{n} \end{vmatrix}, \qquad n = 1, 2, \dots,$$

 $\Phi_0(z) = 1$

0021-9045/01 \$35.00 Copyright © 2001 by Academic Press

All rights of reproduction in any form reserved.

is a sequence of monic orthogonal polynomials with respect to the inner product in \mathbb{P} , the linear space of polynomials with complex coefficients,

$$(p,q) = \left\langle \mathscr{L}, p(z) \,\bar{q}\left(\frac{1}{z}\right) \right\rangle.$$
 (1)

Here \mathscr{L} is the linear functional defined on the linear space of Laurent polynomials L in the following way

$$\langle \mathcal{L}, z^n \rangle = c_n, \qquad n = 0, 1, 2, \dots,$$
$$\langle \mathcal{L}, z^{-n} \rangle = \overline{c_n}, \qquad n = 0, 1, 2, \dots.$$

Notice that $L = span\{z^n\}_{n=-\infty}^{\infty}$ and $\mathbb{P} \subset L$.

<

If $\Delta_n > 0$, n = 0, 1, ..., the linear functional \mathscr{L} is said to be a positive definite linear functional. In such a case, there exists a finite positive Borel measure μ supported on $[-\pi, \pi)$, such that

$$\langle \mathscr{L}, p \rangle = \int_{-\pi}^{\pi} p(e^{i\theta}) \, d\mu(\theta).$$

Taking into account (1) it is straightforward to deduce that the shift operator is isometric with respect to (1), i.e.,

$$(zp, zq) = (p, q), \qquad p, q \in \mathbb{P}.$$

As a consequence of this fact, we can deduce two equivalent ways to generate the sequence of monic orthogonal polynomials (SMOP) (Φ_n) . They were obtained by Szegő [10] in the positive definite case and by Geronimus [4] in the general situation stated above:

Forward recurrence relation,

$$\Phi_n(z) = z \Phi_{n-1}(z) + \Phi_n(0) \Phi_{n-1}^*(z), \qquad n = 1, 2, \dots$$

$$\Phi_0(z) = 1,$$
(2)

Backward recurrence relation,

$$\begin{split} \varPhi_n(z) &= (1 - |\varPhi_n(0)|^2) \, z \varPhi_{n-1}(z) + \varPhi_n(0) \, \varPhi_n^*(z), \qquad n = 1, \, 2, \, \dots \\ \varPhi_0(z) &= 1, \end{split} \tag{3}$$

where

$$\Phi_n^*(z) = z^n \Phi_n(1/\bar{z})$$

is the so-called reversed polynomial of Φ_n . The values $\Phi_n(0)$ are called the reflection (or Schur) parameters for the linear functional \mathcal{L} . A straightforward computation yields

$$1 - |\Phi_n(0)|^2 = \frac{\Delta_n \Delta_{n-2}}{\Delta_{n-1}^2}.$$

We will denote $k_n^2 = (\Phi_n, \Phi_n) = \Delta_n / \Delta_{n-1} = e_n$.

Thus, in the positive definite case $|\Phi_n(0)| < 1$ while in the general case considered in this section, $|\Phi_n(0)| \neq 1$.

Conversely, given a sequence of complex numbers $(a_n)_{n=0}^{\infty}$ with $|a_n| \neq 1$, n = 1, 2, ..., and $a_0 = 1$, there exists a linear functional \mathscr{L} such that $(a_n)_{n=0}^{\infty}$ is the sequence of reflection parameters for the functional, or, equivalently, $a_n = \Phi_n(0)$ where (Φ_n) is the corresponding sequence of monic orthogonal polynomials with respect to \mathscr{L} . This result is an analog of Favard's theorem. (See [3] for the positive definite case and [4, Theorem 4.1] for the general case.)

According to this last result, there exists a linear functional $\tilde{\mathscr{L}}$, or equivalently, a sequence of monic orthogonal polynomials (Ω_n) associated with $\tilde{\mathscr{L}}$, such that $\Omega_n(0) = -a_n$, n = 1, 2, ...

 (Ω_n) is called the SMOP of the second kind associated with \mathscr{L} .

These polynomials can be explicitly given by

$$\Omega_{n}(z) = \frac{1}{c_{0}} \left\langle \mathscr{L}, \frac{y+z}{y-z} \left[\boldsymbol{\Phi}_{n}(y) - \boldsymbol{\Phi}_{n}(z) \right] \right\rangle,$$

where \mathcal{L} acts on the variable y in the right hand side polynomial in two variables.

Finally, we can associate with the linear functional \mathscr{L} a formal series

$$F(z) := c_0 + 2\sum_{n=1}^{\infty} \bar{c}_n z^n.$$
(4)

In the positive definite case, F is an analytic function in the unit disk and Re $F(z) \ge 0$. In the literature, F is said to be a Carathéodory function or C-function. (See [7].) The connection with Schur functions and the Schur algorithm is analyzed in [1].

The link between the formal series F and the sequences (Φ_n) and (Ω_n) is the following

THEOREM 1 [8]. The sequence of monic orthogonal polynomials (Φ_n) , the corresponding polynomials of the second kind (Ω_n) , and the Carathéodory function F, satisfy the relation

$$\begin{split} \varPhi_n(z) \; F(z) + \varOmega_n(z) &= O(z^n), \\ \varPhi_n^*(z) \; F(z) - \varOmega_n^*(z) &= O(z^{n+1}) \end{split}$$

for $z \to 0$.

In comparison with the real case (see [2]), very few explicit examples of SMOP with respect to a linear functional are known in the literature.

A way to generate a new SMOP from a given SMOP (Φ_n) is to consider a sieving process. Unfortunately, there is a strong constraint. For instance —and this is a basic difference with the real case—there exists a unique SMOP (Ψ_n) such that $\Psi_{2n+1}(z) = z\Phi_n(z^2)$. Furthermore, $\Psi_{2n}(z) = \Phi_n(z^2)$. See [5, 6].

In terms of the reflection parameters, this means that the linear transform T in the space of the sequences of reflection parameters is given by

$$T(a_{2n}) = a_n,$$
 $n = 0, 1, 2, ...$
 $T(a_{2n+1}) = 0,$ $n = 0, 1, 2, ...$

with $\Phi_n(0) = a_n$.

For the corresponding formal series,

$$F_T(z) = F(z^2)$$

holds.

The aim of our contribution is the analysis of necessary and sufficient conditions in order that a sequence of polynomials $(\tilde{\Psi}_n)$ defined as a perturbation of (Ψ_n) in the following way

$$\widetilde{\Psi}_{2n}(z) = \Phi_n(z^2) + zB_{n-1}(z^2)
\widetilde{\Psi}_{2n+1}(z) = z\Phi_n(z^2) + D_n(z^2)$$
(5)

with $n = 0, 1, ..., B_{-1} \equiv 0$, and deg $B_{n-1} \leq n-1$, deg $D_n \leq n$, be an SMOP. Next we deduce the expression of the formal series \tilde{F} in terms of the formal series F corresponding to the linear functional \mathcal{L} and the relation between the corresponding Szegő functions. The particular situation when \mathcal{L} is a positive definite functional will be considered. Finally we illustrate the preceding with some examples: the case of real Schur parameters and Bernstein–Szegő polynomials. Our results are a continuation of work started in [6], which is the unit circle analog of a problem raised and solved in the real case by T. S. Chihara and L. Chihara [2].

2. CONDITIONS FOR ORTHOGONALITY

THEOREM 2. Suppose that an SMOP (Φ_n) is given. Then the sequence $(\tilde{\Psi}_n)$, defined by (5) is an SMOP if and only if $D_n(0) \neq 0$ for at most one $n \in \{0, 1, 2, ...\}$, and the polynomials (B_n) and (D_n) satisfy:

(a) if $D_n(0) = 0$ for all $n = 0, 1, 2, ..., then B_n(z) = D_n(z) = 0$ for all n = 0, 1, ...;

(b) if $D_N(0) \neq 0$, then $B_n(z) = D_n(z) = 0$ for n = 0, 1, ..., N-1,

$$D_N(z) = D_N(0) \Phi_N^*(z), \qquad B_N(z) = D_N(z) + \Phi_{N+1}(0) D_N^*(z),$$

 $D_n(z) = zB_{n-1}(z)$ for $n \ge N+1$, and

$$B_{n+1}(z) = zB_n(z) + \Phi_{n+2}(0) B_n^*(z), \qquad n \ge N.$$

Proof. If $(\tilde{\Psi}_n)$ is an SMOP, then the forward recurrence relation

$$\tilde{\Psi}_{2n}(z) = z \tilde{\Psi}_{2n-1}(z) + \tilde{\Psi}_{2n}(0) \tilde{\Psi}^*_{2n-1}(z), \qquad n = 1, 2, \dots$$

Together with (5) gives

$$\begin{split} \varPhi_n(z^2) + z B_{n-1}(z^2) &= z^2 \varPhi_{n-1}(z^2) + \varPhi_n(0) \ \varPhi_{n-1}^*(z^2) \\ &+ z D_{n-1}(z^2) + \varPhi_n(0) \ z D_{n-1}^*(z^2), \qquad n=1,\,2,\,\ldots. \end{split}$$

Since (Φ_n) is an SMOP, we have $\Phi_n(z) = z\Phi_{n-1}(z) + \Phi_n(0) \Phi_{n-1}^*(z)$, so that

$$B_{n-1}(z) = D_{n-1}(z) + \Phi_n(0) D_{n-1}^*(z), \qquad n = 1, 2, ...,$$
(6)

where $D_n^*(z) = z^n \overline{D_n(1/\overline{z})}$, even if deg $D_n \leq n$. On the other hand, from

$$\tilde{\Psi}_{2n+1}(z) = z \tilde{\Psi}_{2n}(z) + \tilde{\Psi}_{2n+1}(0) \tilde{\Psi}_{2n}^{*}(z), \qquad n = 0, 1, 2, \dots$$

the relation (5) gives

$$z\Phi_n(z^2) + D_n(z^2) = z\Phi_n(z^2) + z^2B_{n-1}(z^2) + D_n(0) \Phi_n^*(z^2) + D_n(0) zB_{n-1}^*(z^2), \qquad n = 0, 1, 2, ...,$$

where $B_n^*(z) = z^n \overline{B_n(1/\overline{z})}$, even if deg $B_n \leq n$. Hence

$$D_n(z^2) = z^2 B_{n-1}(z^2) + D_n(0) \Phi_n^*(z^2) + D_n(0) z B_{n-1}^*(z^2).$$

Thus, since $D_n(z^2)$ is an even polynomial,

$$D_0(0) = \Psi_1(0)$$

$$D_n(0) B_{n-1}^*(z) = 0, \qquad n = 1, 2, ...,$$
(7)

so that

$$D_n(z) = zB_{n-1}(z) + D_n(0) \Phi_n^*(z)$$
(8)

for all n = 0, 1, 2, ...

We will consider two possible situations:

(i) $D_n(0) = 0$ for every n = 0, 1, 2, ... Then, from (8)

$$D_n(z) = zB_{n-1}(z)$$

for $n = 0, 1, 2, \dots$ Furthermore, in (6) we get

$$B_{n-1}(z) = zB_{n-2}(z) + \Phi_n(0) B_{n-2}^*(z), \qquad n = 1, 2, 3, \dots$$

Substituting n = 1 in (6) gives

$$B_0(z) = 0.$$

With this initial condition it follows that $B_n(z) = 0$ for every n = 0, 1, ...and $D_n(z) = 0$ for every n = 0, 1, ...

In conclusion, we have in this case

$$\widetilde{\Psi}_{2n}(z) = \Phi_n(z^2),$$

$$\widetilde{\Psi}_{2n+1}(z) = z\Phi_n(z^2).$$

(ii) $D_n(0) \neq 0$ for at least one $n \in \mathbb{N}$. Let N be a fixed nonnegative integer and assume $D_N(0) \neq 0$. If $N \ge 1$, then from (7), it follows that $B_{N-1}(z) = 0$. Using (6) $D_{N-1}(z) = 0$. Again from (8), $B_{N-2}(z) = 0$. Repeating the process gives $B_k(z) = D_k(z) = 0$ for k = 0, 1, ..., N-1. If there exists M > N such that $D_M(0) \neq 0$, we get a contradiction because in such a case, according to the above reasoning $D_N(0)$ must vanish.

Thus two cases appear:

(a)
$$D_0(0) \neq 0$$
 and $D_n(0) = 0$, $n = 1, 2, ...$ Then
 $D_0(z) = D_0(0)$, $\alpha = B_0(z) = D_0(0) + \Phi_1(0) \overline{D_0(0)} \neq 0$,
 $D_n(z) = zB_{n-1}(z)$, $n = 1, 2, ...$,
 $B_n(z) = zB_{n-1}(z) + \Phi_{n+1}(0) B_{n-1}^*(z)$, $n = 1, 2, ...$

This last relation means that the sequence of monic polynomials (V_n) with $V_n(z) = B_n(z)/B_0(z)$ satisfies a forward recurrence relation as (2) with reflection parameters $V_n(0) = e^{i\varphi} \Phi_{n+1}(0)$, n = 1, 2, ..., and $e^{i\varphi} = \overline{B_0(z)}/B_0(z)$. This corresponds to a shift in the sequence of reflection parameters and (V_n) is again a sequence of monic orthogonal polynomials. In fact

$$V_n(z) = \frac{p(z) \, \Phi_{n+1}(z) + q(z) \, \Omega_{n+1}(z)}{2z(1 - |\Phi_1(0)|^2)},\tag{9}$$

where

$$\begin{split} p(z) &= (e^{i\varphi} - \overline{\Phi_1(0)}) \ z + (1 - e^{i\varphi} \Phi_1(0)) \\ q(z) &= (\overline{\Phi_1(0)} - e^{i\varphi}) \ z + (1 - e^{i\varphi} \Phi_1(0)) \end{split}$$

(see [7]).

Thus

$$\begin{split} \tilde{\Psi}_{2n}(z) &= \varPhi_n(z^2) + \alpha z V_{n-1}(z^2), \qquad n = 0, \ 1, \ 2, \ \dots \\ \tilde{\Psi}_{2n+1}(z) &= z \tilde{\Psi}_{2n}(z), \qquad \qquad n = 1, \ 2, \ \dots \end{split}$$

while $\tilde{\Psi}_1(z) = z + D_0(0)$.

(b) $D_N(0) \neq 0$, $N \ge 1$, and $D_n(0) = 0$ for $n \neq N$. Then $B_m(z) = D_m(z) = 0$, m = 0, 1, ..., N - 1. On the other hand, from (8)

$$D_N(z) = D_N(0) \Phi_N^*(z).$$

From (6)

$$B_N(z) = D_N(z) + \Phi_{N+1}(0) D_N^*(z).$$

But from (8)

$$D_n(z) = zB_{n-1}(z), \qquad n = N+1, \dots$$

and by substitution in (6)

$$B_{n+1}(z) = zB_n(z) + \Phi_{n+2}(0) B_n^*(z), \qquad n = N, N+1, \dots.$$
(10)

Taking into account that the leading coefficient of B_N is

$$\alpha_N = D_N(0) \, \Phi_N(0) + \Phi_{N+1}(0) \, D_N(0)$$

we get

(b.1) If $\Phi_N(0) \neq 0$, i.e., $\alpha_N \neq 0$, then deg $B_n = n$ for n = N, N+1, ..., and the sequence $(B_n, n \ge N)$ can be obtained explicitly from (10).

(b.2) If $\Phi_N(0) = 0$, then deg $B_N = k \le N - 1$. Thus, deg $B_n = k + n - N$ for every n = N, N + 1, ..., and the sequence $(B_n, n \ge N)$ can be obtained explicitly from (10).

In both cases

$$\begin{cases} \tilde{\Psi}_{2n}(z) = \Phi_n(z^2), & n = 0, 1, \dots, N \\ \tilde{\Psi}_{2n-1}(z) = z\Phi_{n-1}(z^2), & n = 1, 2, \dots, N \\ \tilde{\Psi}_{2N+1}(z) = z\Phi_N(z^2) + D_N(0) \ \Phi_N^*(z^2) \\ \\ \begin{cases} \tilde{\Psi}_{2n+2}(z) = \Phi_{n+1}(z^2) + zB_n(z^2), & n = N, N+1, \dots \\ \tilde{\Psi}_{2n+3}(z) = z\tilde{\Psi}_{2n+2}(z), & n = N, N+1, \dots \end{cases}$$

with

$$B_n(z) = zB_{n-1}(z) + \Phi_{n+1}(0) B_{n-1}^*(z)$$

for $n \ge N+1$ and

$$B_N(z) = D_N(0) \, \Phi_N^*(z) + \Phi_{N+1}(0) \, \overline{D_N(0)} \, \Phi_N(z). \quad \blacksquare \tag{11}$$

As a conclusion, if $|\gamma| \neq 1$, where $\gamma = D_N(0)$, there exists a unique SMOP $(\tilde{\Psi}_n)$ such that the reflection parameters are

$$\begin{cases} \tilde{\Psi}_{2n}(0) = \Phi_n(0), & n = 0, 1, ..., \\ \tilde{\Psi}_{2n+1}(0) = 0, & n \neq N, \\ \tilde{\Psi}_{2N+1}(0) = \gamma. \end{cases}$$
(12)

Remark. Assume that α is a zero of B_N , i.e., $B_N(\alpha) = 0$, $(N \ge 1)$. Then we have

$$|D_N(\alpha)| = |\Phi_{N+1}(0)| \ |D_N^*(\alpha)|$$

and from (11)

$$|D_N(0)| \ |\Phi_N^*(\alpha)| = |\Phi_{N+1}(0)| \ |\overline{D_N(0)}| \ |\Phi_N(\alpha)|.$$

Thus, in the positive definite case

$$\frac{|\Phi_N^*(\alpha)|}{|\Phi_N(\alpha)|} < 1,$$

so that $|\alpha| > 1$. So the monic polynomials corresponding to (B_n) cannot be an SMOP.

The next step will be an alternative way to deduce an explicit expression for the sequence $(\tilde{\Psi}_n)$ in terms of the sequences (Φ_n) and (Ω_n) , where (Ω_n) is the SMOP of the second kind for (Φ_n) .

Taking into account (11), $(\tilde{\Psi}_n)$ is a finite perturbation of (Ψ_n) at level 2N+1, i.e., the reflection parameters of these two SMOP are the same for $m \ge 2N+2$ (and in our case also coincide for $m \le 2N$).

Thus,

$$\begin{cases} \tilde{\Psi}_{2n}(z) = \Phi_n(z^2), & n = 0, 1, ..., N\\ \tilde{\Psi}_{2n+1}(z) = z\Phi_n(z^2), & n = 0, 1, ..., N-1\\ \tilde{\Psi}_{2N+1}(z) = z\Phi_N(z^2) + \gamma \Phi_N^*(z^2). \end{cases}$$

For the remaining terms we have, taking into account Theorem 3.1 in [7],

$$\begin{split} \underbrace{\left[\tilde{\mathcal{A}}_{2N+1}(z) + \tilde{\mathcal{A}}_{2N+1}^{*}(z)\right]\tilde{\Psi}_{2N+1+k}(z) + \left[\tilde{\Psi}_{2N+1}^{*}(z) - \tilde{\Psi}_{2N+1}(z)\right]\tilde{\mathcal{A}}_{2N+1+k}(z)}_{1 - |\gamma|^{2}} \\ &= \left[\mathcal{A}_{2N+1}(z) + \mathcal{A}_{2N+1}^{*}(z)\right]\Psi_{2N+1+k}(z) \\ &+ \left[\Psi_{2N+1}^{*}(z) - \Psi_{2N+1}(z)\right]\mathcal{A}_{2N+1+k}(z) \end{split}$$

and

$$\begin{split} \underline{\left[\tilde{\Psi}_{2N+1}(z) + \tilde{\Psi}_{2N+1}^{*}(z) \right] \tilde{\Lambda}_{2N+1+k}(z) + \left[\tilde{\Lambda}_{2N+1}^{*}(z) - \tilde{\Lambda}_{2N+1}(z) \right] \tilde{\Psi}_{2N+1+k}(z)}_{1 - |\gamma|^2} \\ = \left[\Psi_{2N+1}(z) + \Psi_{2N+1}^{*}(z) \right] \Lambda_{2N+1+k}(z) \\ + \left[\Lambda_{2N+1}^{*}(z) - \Lambda_{2N+1}(z) \right] \Psi_{2N+1+k}(z), \end{split}$$

where $(\tilde{\Lambda}_n)$ and (Λ_n) are, respectively, the sequences of monic polynomials of the second kind associated with $(\tilde{\Psi}_n)$ and (Ψ_n) .

In matrix form

$$\begin{split} &\frac{1}{1-|\gamma|^2} \begin{pmatrix} \tilde{A}_{2N+1}(z) & -\tilde{\Psi}_{2N+1}(z) \\ \tilde{A}_{2N+1}^*(z) & \tilde{\Psi}_{2N+1}^*(z) \end{pmatrix} \begin{pmatrix} \tilde{\Psi}_{2N+1+k}(z) \\ \tilde{A}_{2N+1+k}(z) \end{pmatrix} \\ &= \begin{pmatrix} A_{2N+1}(z) & -\Psi_{2N+1}(z) \\ A_{2N+1}^* & \Psi_{2N+1}^*(z) \end{pmatrix} \begin{pmatrix} \Psi_{2N+1+k}(z) \\ A_{2N+1+k}(z) \end{pmatrix}. \end{split}$$

Keeping in mind that

$$\begin{split} \Psi_{2N}(z) &= \varPhi_N(z^2), \qquad \qquad \Lambda_{2N}(z) = \varOmega_N(z^2), \\ \Psi_{2N+1}(z) &= z\varPhi_N(z^2), \qquad \Lambda_{2N+1}(z) = z\varOmega_N(z^2), \end{split}$$

and

$$\begin{split} \widetilde{\Psi}_{2N+1}(z) &= z \widetilde{\Psi}_{2N}(z) + \gamma \widetilde{\Psi}_{2N}^*(z), \\ \widetilde{\Lambda}_{2N+1}(z) &= z \widetilde{\Lambda}_{2N}(z) - \gamma \widetilde{\Lambda}_{2N}^*(z), \end{split}$$

we then find

$$\begin{split} & \begin{pmatrix} \tilde{\Psi}_{2N+1+k}(z) \\ \tilde{A}_{2N+1+k}(z) \end{pmatrix} \\ &= \begin{pmatrix} z\Omega_N(z^2) & -z\Phi_N(z^2) \\ \Omega_N^*(z^2) & \Phi_N^*(z^2) \end{pmatrix}^{-1} \begin{pmatrix} 1 & \gamma \\ \gamma & 1 \end{pmatrix} \begin{pmatrix} z\Omega_N(z^2) & -z\Phi_N(z^2) \\ \Omega_N^*(z^2) & \Phi_N^*(z^2) \end{pmatrix} \begin{pmatrix} \Psi_{2N+1+k}(z) \\ A_{2N+1+k}(z) \end{pmatrix} \\ &= \frac{1}{z(\Omega_N(z^2) \Phi_N^*(z^2) + \Omega_N^*(z^2) \Phi_N(z^2))} \begin{pmatrix} \Phi_N^*(z^2) & z\Phi_N(z^2) \\ -\Omega_N^*(z^2) & z\Omega_N(z^2) \end{pmatrix} \\ & \times \begin{pmatrix} 1 & \gamma \\ \gamma & 1 \end{pmatrix} \begin{pmatrix} z\Omega_N(z^2) & -z\Phi_N(z^2) \\ \Omega_N^*(z^2) & \Phi_N^*(z^2) \end{pmatrix} \begin{pmatrix} \Psi_{2N+1+k}(z) \\ A_{2N+1+k}(z) \end{pmatrix}. \end{split}$$

Taking into account that (see [4])

$$\Omega_N(z) \ \Phi_N^*(z) + \Omega_N^*(z) \ \Phi_N(z) = 2z^N e_N = 2z^N \prod_{i=1}^N (1 - |\Phi_i(0)|^2),$$

we get

$$\begin{pmatrix} \tilde{\Psi}_{2N+1+k}(z) \\ \tilde{\Lambda}_{2N+1+k}(z) \end{pmatrix}$$

$$= \frac{1}{2z^{2N+1}e_N} \begin{pmatrix} \Phi_N^*(z^2) + z\bar{\gamma}\Phi_N(z^2) & \gamma\Phi_N^*(z^2) + z\Phi_N(z^2) \\ -\Omega_N^*(z^2) + z\bar{\gamma}\Omega_N(z^2) & -\gamma\Omega_N^*(z^2) + z\Omega_N(z^2) \end{pmatrix}$$

$$\cdot \begin{pmatrix} z\Omega_N(z^2) & -z\Phi_N(z^2) \\ \Omega_N^*(z^2) & \Phi_N^*(z^2) \end{pmatrix} \begin{pmatrix} \Psi_{2N+1+k}(z) \\ \Lambda_{2N+1+k}(z) \end{pmatrix}$$

$$= \frac{1}{2z^{2N+1}e_N} \begin{pmatrix} R(z) & S(z) \\ U(z) & V(z) \end{pmatrix} \begin{pmatrix} \Psi_{2N+1+k}(z) \\ \Lambda_{2N+1+k} \end{pmatrix}.$$
(13)

Here

$$\begin{split} R(z) &= 2z^{2N+1}e_N + z^2\bar{\gamma}\varPhi_N(z^2)\;\varOmega_N(z^2) + \gamma\varPhi_N^*(z^2)\;\varOmega_N^*(z^2),\\ S(z) &= \gamma(\varPhi_N^*(z^2))^2 - z^2\bar{\gamma}(\varPhi_N(z^2))^2,\\ U(z) &= -\gamma(\varOmega_N^*(z^2))^2 + z^2\bar{\gamma}(\varOmega_N(z^2))^2,\\ V(z) &= 2z^{2N+1}e_N - z^2\bar{\gamma}\varPhi_N(z^2)\;\varOmega_N(z^2) - \gamma\varPhi_N^*(z^2)\;\varOmega_N^*(z^2). \end{split}$$

Thus, for m = N + 1, ...,

$$\begin{split} \tilde{\Psi}_{2m}(z) &= \Psi_{2m}(z) + \frac{1}{2e_N} z^{2N+1} [\left(\bar{\gamma} z^2 \Phi_N(z^2) \, \Omega_N(z^2) \right. \\ &+ \gamma \Phi_N^*(z^2) \, \Omega_N^*(z^2) \right) \, \Phi_m(z^2) \\ &+ \left(\gamma (\Phi_N^*(z^2))^2 - \bar{\gamma} z^2 (\Phi_N(z^2))^2 \right) \, \Omega_m(z^2)]. \end{split}$$

In other words

$$\begin{split} B_{m-1}(z) &= \frac{1}{2e_N z^{N+1}} \left[\bar{\gamma} z^2 \Phi_N(z) \, \Omega_N(z) \right. \\ &+ \gamma \Phi_N^*(z) \, \Omega_N^*(z)) \, \Phi_m(z) + \left(\gamma (\Phi_N^*(z))^2 - \bar{\gamma} z (\Phi_N(z))^2 \right) \Omega_m(z) \right]. \end{split}$$

If we denote by \tilde{F} the C-function associated with the SMOP $\{\tilde{\Psi}_n\}$, and if we take into account Theorem 1, we get from (13)

PROPOSITION 3. For the Carathéodory function associated with SMOP $(\tilde{\Psi}_n)$ we have the relation

$$\widetilde{F}(z) = \frac{V(z) F(z^2) - U(z)}{-S(z) F(z^2) + R(z)}.$$

Proof. For $n \ge 2N + 1$ we have

$$\frac{\Lambda_n^*(z)}{\Psi_n^*(z)} = \frac{-U(z) \ \Psi_n^*(z) + V(z) \ \Lambda_n^*(z)}{R(z) \ \Psi_n^*(z) - S(z) \ \Lambda_n^*(z)}$$

according to (13). Then

$$\widetilde{F}(z) = \lim_{n} \frac{\widetilde{\mathcal{A}}_{n}^{*}(z)}{\widetilde{\Psi}_{n}^{*}(z)} = \frac{-U(z) F(z^{2}) + V(z)}{R(z) - S(z) F(z^{2})}.$$

Recall that, in the positive definite case, the measure $d\mu$ belongs to the Szegő class when $(\Phi_n(0)) \in l_2$. In this case we can define the Szegő function as

$$D(z; d\mu) = \exp\left\{\frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{1+ze^{-i\theta}}{1-ze^{-i\theta}} \log \mu'(\theta) \ d\theta\right\}, \qquad |z| < 1$$

(see [10]) and furthermore

$$D(z; d\mu) = \lim_{n} \frac{\kappa_n}{\Phi_n^*(z)}$$
(14)

locally uniformly in |z| < 1.

PROPOSITION 4. Let $d\mu$ be in the Szegő class. For $\gamma \in \mathbb{C}$, $|\gamma| < 1$, there exists a measure $d\tilde{\nu}$ associated with the polynomials $(\tilde{\Psi}_n)$, which belongs to the Szegő class. Moreover, the corresponding Szegő function is

$$D(z; d\tilde{v}) = (1 - |\gamma|^2)^{-1/2} \frac{D(z^2, d\mu)}{R(z) - S(z) F(z)}, \qquad |z| < 1.$$

Proof. According to (14) we have

$$D(z; d\tilde{v}) = \lim_{n} \frac{\tilde{\kappa}_{n}}{\tilde{\Phi}_{n}^{*}(z)}$$
$$= \lim_{n} \frac{(1 - |\gamma|^{2})^{-1/2} \kappa_{n}}{R(z) \Phi_{n}^{*}(z^{2}) - S(z) \Omega_{n}^{*}(z^{2})}$$
$$= (1 - |\gamma|^{2})^{-1/2} \lim_{n} \frac{\kappa_{n} / \Phi_{n}^{*}(z^{2})}{R(z) - S(z) (\Omega_{n}^{*}(z^{2}) / \Phi_{n}^{*}(z^{2}))}$$
$$= (1 - |\gamma|^{2})^{-1/2} \frac{D(z^{2}; d\mu)}{R(z) - S(z) F(z^{2})}$$

in |z| < 1.

3. SOME EXAMPLES

1. Real Parameters

We illustrate the preceding results with some examples. First, we consider real Schur parameters $\Phi_n(0) \in \mathbb{R}$ $(n \ge 0)$, $|\Phi_n(0)| < 1$, as well as $\gamma \in \mathbb{R}$ and $|\gamma| < 1$.

The relation between orthogonal polynomials on the unit circle $(\Phi_n)_{n \in \mathbb{N}}$ and orthogonal polynomials $(P_n)_{n \in \mathbb{N}}$ on the real axis is well known. (See [4, 10, 11].)

In fact, if

$$xP_{n}(x) = P_{n+1}(x) + \beta_{n}P_{n}(x) + \gamma_{n}P_{n-1}(x)$$

then

$$\begin{split} & 2\beta_n = \Phi_{2n-1}(0)(1-\Phi_{2n}(0)) - \Phi_{2n+1}(0)(1+\Phi_{2n}(0)), \\ & 4\gamma_{n+1} = (1-\Phi_{2n+2}(0))(1-\Phi_{2n+1}^2(0))(1+\Phi_{2n}(0)). \end{split}$$

If denote by $(\tilde{P}_n)_{n \in \mathbb{N}}$ the SMOP on \mathbb{R} associated to $(\tilde{\Psi}_n)_{n \in \mathbb{N}}$ and by $\tilde{\beta}_n$, $\tilde{\gamma}_n$ respectively the coefficients of the corresponding three-term recurrence relation, we can deduce in a straightforward way that

$$\begin{split} \widetilde{\beta}_n &= 0, \qquad n \neq N, \, N+1 \\ & 2\widetilde{\beta}_N = -\gamma(1+\Phi_N(0)), \\ & 2\widetilde{\beta}_{N+1} = \gamma(1+\Phi_N(0)), \\ & 4\widetilde{\gamma}_{n+1} = (1+\Phi_{n+1}(0))(1+\Phi_n(0)), \qquad n \neq N, \\ & 4\widetilde{\gamma}_{N+1} = (1-\Phi_{N+1}(0))(1-\gamma^2)(1+\Phi_N(0)). \end{split}$$

We now take into consideration the polynomials (\tilde{P}_n) . We can express them in terms of (P_n) , via the family (\bar{P}_n) , associated with the SMOP (Ψ_n) .

For the case $\Phi_n(0) \in \mathbb{R}$ $(n \ge 0)$, the relation between Φ_n and P_n can be written (see [10])

$$P_n(x) = \frac{\Phi_{2n}(z) + \Phi_{2n}^*(z)}{(1 + \Phi_{2n}(0)) \ 2^n z^n} = \frac{z \Phi_{2n-1}(z) + \Phi_{2n-1}^*(z)}{2^n z^n},$$

where $x = (z + z^{-1})/2$. In a similar way, for the second kind of polynomials we can define the SMOP $(Q_n)_{n=0}^{\infty}$ (see [7])

$$Q_n(x) = \frac{z\Omega_{2n-1}(z) + \Omega_{2n-1}^*(z)}{2^n z^n},$$

and

$$\begin{split} iy P_{n-1}^{(1)}(x) &= \frac{z \Omega_{2n-1}(z) - \Omega_{2n-1}^*(z)}{2^n z^n}, \\ iy Q_{n-1}^{(1)}(x) &= \frac{z \Phi_{2n-1}(z) - \Phi_{2n-1}^*(z)}{2^n z^n}, \end{split}$$

where $(P_n^{(1)})$ and $(Q_n^{(1)})$ are the first kind associated SMOP and $y = (z - z^{-1})/2i$. Thus

$$\begin{split} \Phi_{2n-1}(z) &= 2^{n-1} z^{n-1} (P_n(x) + i y Q_{n-1}^{(1)}(x)), \\ \Phi_{2n-1}^*(z) &= 2^{n-1} z^n (P_n(x) - i y Q_{n-1}^{(1)}(x)), \\ \Omega_{2n-1}(z) &= 2^{n-1} z^{n-1} (Q_n(x) + i y P_{n-1}^{(1)}(x)), \\ \Omega_{2n-1}^*(z) &= 2^{n-1} z^n (Q_n(x) - i y P_{n-1}^{(1)}(x)). \end{split}$$
(15)

Keeping in mind the definition of $(\Psi_n)_{n=0}^{\infty}$, we get

$$\bar{P}_m(x) = \frac{\Phi_m(z^2) + \Phi_m^*(z^2)}{(1 + \Phi_m(0)) \ 2^m z^m}$$

For m = 2n the above expression becomes

$$\bar{P}_{2n}(x) = \frac{\Phi_{2n}(z^2) + \Phi_{2n}^*(z^2)}{(1 + \Phi_{2n}(0)) \ 2^{2n} z^{2n}}.$$

If we denote $w = z^2$, $u = (w + w^{-1})/2$, $v = (w - w^{-1})/2i$, we have $u = 2x^2 - 1$, v = 2xy. Then from (15)

$$\overline{P}_{2n}(x) = 2^{-n} P_n(2x^2 - 1).$$

Similarly, for m = 2n + 1,

$$\begin{split} \bar{P}_{2n+1}(x) &= \frac{\varPhi_{2n+1}(w) + \varPhi_{2n+1}^{*}(w)}{(1 + \varPhi_{2n+1}(0)) \ 2^{2n+1}z^{2n+1}} \\ &= \frac{P_{n+1}(u) + iv Q_n^{(1)}(u) + w[\ P_{n+1}(u) - iv Q_n^{(1)}(u)]}{(1 + \varPhi_{2n+1}(0)) \ 2^{n+1}z} \\ &= \frac{x P_{n+1}(2x^2 - 1) + 2x(1 - x^2) \ Q_n^{(1)}(2x^2 - 1)}{2^n(1 + \varPhi_{2n+1}(0))}. \end{split}$$

In both cases, for $n \ge N+1$, \tilde{P}_n can be given in terms of \bar{P}_n in the following way.

From (13)

$$\begin{split} \tilde{P}_n(x) = & \frac{\tilde{\Psi}_{2n}(z) + \tilde{\Psi}_{2n}^*(z)}{(1 + \Psi_{2n}(0)) \ 2^n z^n} \\ = & \frac{1}{(1 + \Psi_{2n}(0)) \ 2^n z^n} \bigg[\frac{R(z) \ \Psi_{2n}(z) + S(z) \ \Psi_{2n}^*(z)}{2 z^{2N+1} e_N} \\ & + \frac{R^*(z) \ \Psi_{2n}^*(z) + S^*(z) \ \Psi_{2n}(z)}{2 z^{2N+1} e_N} \bigg]. \end{split}$$

By considering that $R^*(z) = R(z)$ and $S^*(z) = -S(z)$, we have

$$\begin{split} \widetilde{P}_n(x) &= \frac{R(z) \left[\Psi_{2n}(z) + \Psi_{2n}^*(z) \right] + S(z) \left[\Lambda_{2n}(z) - \Lambda_{2n}^*(z) \right]}{(1 + \Psi_{2n}(0)) \, 2^n z^n 2 z^{2N+1} e_N} \\ &= \frac{R(z)}{2z^{2N+1} e_N} \, \overline{P}_n(x) + \frac{S(z)}{2z^{2N+1} e_N} \, iy \overline{P}_{n-1}^{(1)}(x). \end{split}$$

Since $\gamma \in \mathbb{R}$, from (13) and (15) we get

$$\begin{split} R(z) &= 2z^{2N+1}e_N + \gamma \big[\, \Psi_{2N+1}(z) \, \Lambda_{2N+1}(z) + \Psi_{2N+1}^*(z) \, \Lambda_{2N+1}^*(z) \big] \\ &= 2z^{2N+1}e_N + 2^{2N}z^{2N+1}\gamma \big[(\bar{P}_{N+1}(x) \, \bar{Q}_{N+1}(x) \\ &- y^2 \bar{P}_N^{(1)}(x) \, \bar{Q}_N^{(1)}(x))(z+z^{-1}) \\ &- iy(\bar{P}_{N+1}(x) \, \bar{P}_N^{(1)}(x) + \bar{Q}_{N+1}(x) \, \bar{Q}_N^{(1)}(x))(z-z^{-1}) \big]. \end{split}$$

Thus,

$$\begin{split} \frac{R(z)}{2z^{2N+1}e_N} &= 1 + \frac{2^{2N}\gamma}{e_N} \left[x(\bar{P}_{N+1}(x) \ \bar{Q}_{N+1}(x) - (1-x^2) \ \bar{P}_N^{(1)}(x) \ \bar{Q}_N^{(1)}(x)) \right. \\ &+ (1-x^2)(\bar{P}_{N+1}(x) \ \bar{P}_N^{(1)}(x) + \bar{Q}_{N+1}(x) \ \bar{Q}_N^{(1)}(x)) \right] \\ &= \rho(x), \end{split}$$

where ρ is a polynomial of degree less than or equal to 2N + 3. In an analogous way

$$\begin{split} S(z) &= \gamma \left[\Psi_{2N+1}^{*2}(z) - \Psi_{2N+1}^{2}(z) \right] \\ &= 2^{2N} z^{2N+1} \gamma \left[(\bar{P}_{N+1}^{2}(x) - y^{2} \bar{Q}_{N}^{(1)^{2}}(x))(z-z^{-1}) \right. \\ &\quad - 2iy \bar{P}_{N+1}(x) \; \bar{Q}_{N}^{(1)}(x)(z+z^{-1}) \left]. \end{split}$$

Then

$$\frac{S(z)}{2z^{2N+1}e_N} = 2^{2N} \gamma \left[\bar{P}_{N+1}^2(x) - y^2 \bar{Q}_N^{(1)^2}(x) - 2x \bar{P}_{N+1}(x) \; \bar{Q}_N^{(1)}(x) \right] iy = -iy\sigma(x)$$

with deg $\sigma \leq 2N + 2$. In both cases, $R(z)/2^{2N+1}z^{2N+1}$ and $S(z)/2^{2N+1}z^{2N+1}$ can be expressed in terms of Chebyshev polynomials of the first and second kind

$$\rho(x) = \sum_{j=0}^{N} \alpha_j T_{2N+1-2j}(x), \qquad -iy\sigma(x) = (z-z^{-1}) \sum_{j=0}^{N} \beta_j U_{2N-2j}(x),$$

where α_j and β_j are real coefficients, depending on the Schur parameters $(\Phi_j(0))_{j=0}^N$.

Now, we have

$$\tilde{P}_n(x) = \rho(x) \ \bar{P}_n(x) + (1 - x^2) \ \sigma(x) \ \bar{P}_n^{(1)}(x).$$

So, we have deduced the relation between (\tilde{P}_n) and (P_n) .

2. Bernstein–Szegő Polynomials

Now we consider Bernstein-Szegő type polynomials, i.e., the SMOP defined by

$$\Phi_n(0) = 0, \qquad \forall n \ge k+1, \quad k \ge 0,$$

and $|\Phi_n(0)| < 1, n \le k$.

We will maintain the notation of the previous sections. Then, the corresponding C-function is

$$F(z) = \frac{\Omega_k^*(z)}{\Phi_k^*(z)}.$$

Now, we make the perturbation at level 2N + 1 with $N \ge k$. Thus

$$\begin{split} \widetilde{\Psi}_{2N+1}(z) &= z \Psi_{2N}(z) + \gamma \Psi_{2N}^*(z), \\ \widetilde{\Lambda}_{2N+1}(z) &= z \Lambda_{2N}(z) - \gamma \Lambda_{2N}^*(z), \end{split}$$

 $(|\gamma| < 1)$, and for $m \ge 2N + 1$,

$$\begin{split} & \tilde{\boldsymbol{\Psi}}_{m+1}(z) = z^{m-2N} \tilde{\boldsymbol{\Psi}}_{2N+1}(z), \\ & \tilde{\boldsymbol{\Lambda}}_{m+1}(z) = z^{m-2N} \tilde{\boldsymbol{\Lambda}}_{2N+1}(z). \end{split}$$

As a consequence we have

$$\begin{split} \widetilde{F}(z) &= \frac{\widetilde{\Lambda}_{2N+1}^*(z)}{\widetilde{\Psi}_{2N+1}^*(z)} = \frac{\Lambda_{2N}^*(z) - \bar{\gamma} z \Lambda_{2N}(z)}{\Psi_{2N}^*(z) + \bar{\gamma} z \Psi_{2N}(z)} \\ &= \frac{\Omega_N^*(z^2) - \bar{\gamma} z \Omega_N(z^2)}{\Phi_N^*(z^2) + \bar{\gamma} z \Phi_N(z^2)} = \frac{\Omega_k^*(z^2) - \bar{\gamma} z^{2(N-k)+1} \Omega_k(z^2)}{\Phi_k^*(z^2) + \bar{\gamma} z^{2(N-k)+1} \Phi_k(z^2)}. \end{split}$$

If \tilde{F} has a pole α on \mathbb{T} , then

$$|\Phi_k^*(\alpha^2)| = |\bar{\gamma}\alpha^{2(N-k)+1}\Phi_k(\alpha^2)|$$

with $\alpha = e^{i\theta}$. Then, from $|\Phi_k^*(e^{2i\theta})| = |\Phi_k(e^{2i\theta})|$, we deduce $|\gamma| = 1$, which contradicts $|\gamma| < 1$. So, the corresponding orthogonality measure is absolutely continuous. (See [7].)

Notice that the Bernstein–Szegő class is preserved under such a transformation of the Schur parameters.

Furthermore, in the positive definite case, the Szegő function is

$$D(z;d\mu) = \frac{\kappa_k}{\Phi_k^*(z)}.$$

The modified Szegő function can be written as

$$\begin{split} D(z; d\tilde{v}) &= \frac{\tilde{\kappa}_{2N+1}}{\tilde{\Psi}_{2N+1}^*(z)} \\ &= \frac{(1-|\gamma|^2)^{-1/2} \kappa_N}{\Psi_{2N}^*(z) + \bar{\gamma} z \Psi_{2N}(z)} = \frac{(1-|\gamma|^2)^{-1/2} \kappa_k}{\Phi_k^*(z^2) + \bar{\gamma} z^{2(N-k)+1} \Phi_k(z^2)}. \end{split}$$

Notice that when k = 0, (Lebesgue measure) we have

$$\tilde{F}(z) = \frac{1 - \bar{\gamma} z^{2N+1}}{1 + \gamma z^{2N+1}}.$$

ACKNOWLEDGMENTS

This paper was finished during a stay of the first author at Departamento de Matemáticas, Universidad Carlos III de Madrid. This stay was partially supported by CAI, "Programa Europa de Ayudas a la Investigación." The work of the first and third author was supported partially by PAI UZ-97-CIE-10. The work of the second author was supported by Dirección General de Enseñanza Superior (DGES) of Spain under Grant PB 96-0120-C03-01 and INTAS project, INTAS 93 0219 EXT. The authors are very grateful to Professor Manuel Alfaro for his remarks and useful suggestions.

REFERENCES

- M. Bakonyi and T. Constantinescu, "Schur's Algorithm and Several Applications," Pitman Research Notes in Mathematics Series, Vol. 261, Longman Scientific Technical, Essex, UK, 1992.
- T. S. Chihara and L. Chihara, A class of non-symmetric orthogonal polynomials, J. Math. Anal. Appl. 126 (1987), 275–291.
- T. Erdelyi, J. S. Geronimo, P. Nevai, and J. Zhang, A simple proof of "Favard's Theorem" on the unit circle, *Atti Sem. Mat. Fis. Univ. Modena* 29 (1991), 41–46.
- Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, *in* "Amer. Math. Soc. Transl.," Vol. 3, pp. 1–78, Amer. Math. Soc., Providence, RI, 1962.

- M. E. H. Ismail and X. Li, On sieved orthogonal polynomials. IX. Orthogonality on the unit circle, *Pacific J. Math.* 153 (1992), 289–297.
- F. Marcellan and G. Sansigre, Orthogonal polynomials on the unit circle: Symmetrization and quadratic decomposition, J. Approx. Theory 65 (1991), 109–119.
- F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials, *Constr. Approx.* 12 (1996), 161–185.
- 8. F. Peherstorfer and R. Steinbauer, Characterization of general orthogonal polynomials with respect to a functional, J. Comput. Appl. Math. 65 (1995), 339–355.
- F. Peherstorfer and R. Steinbauer, Perturbation of orthogonal polynomials on the unit circle—A survey, *in* "Proceedings Workshop on Orthogonal Polynomials on the Unit Circle" (M. Alfaro *et al.*, Eds.), pp. 97–119, Universidad Carlos III, Leganés, 1994.
- G. Szegő, "Orthogonal Polynomials," 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23, Providence, 1975.
- W. Van Assche, Orthogonal polynomials in the complex plane and on the real line, *in* "Fields Inst. Commun.," Vol. 14, pp. 211–245, Amer. Math. Soc., Providence, RI, 1997.